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Abstract. 

The note discusses some considerations which speak to the plausibility of the 

axiom that all sets are countable. It then shows that there are contradictory but non-

trivial theories of ZF set theory plus this Axiom. 

 ملخّص

كم انفئبت  نّانبديهيّة انتي تقىل بأ الاعتببرات انمتعهّقة بإمكبن قبىل هذي انمدوّوة بعض تطزح

ن ن تكىدون أب وظزيبت متىبقضةعه وجىد ببنتبني  انمدوّوة تكشف (.حسببهب)يمكه عدّهب 

.                                       هذي انبديهيّة إضبفة فزاوكم في انفئبت مع-تبفهة نىظزية سرمهى  

Résumé. 

La note discute quelques considérations à propos de la plausibilité de l‘Axiome 

selon lequel tous les ensembles sont comptables. Elle montre ensuite qu‘il y a des 

versions contradictoires mais non triviales de la théorie ZF des ensembles plus cet 

Axiome. 

 

In this note, I will make a few comments on a principle concerning sets which. I will call 

the Axiom of Countability. Like the Axiom of Choice, this comes in a weaker and a 

stronger form (local and global). The weaker form is a principle which says that every set 

is countable: 

 
WAC   ∀z∃f(f is a function with domain ω ∧∀x ∈ z∃n ∈ ω f (n) = x) 
 
(The variables range over pure sets—including natural numbers. ω is the set of all 

natural numbers.) The stronger form is that the totality of all sets is countable: 

 

SAC   ∃f(f is a function with domain ω ∧ ∀x∃n ∈ ω f (n) = x) 
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The stronger form implies the weaker. Any set, a, is a sub-totality of the totality of all 

sets. Hence, if the latter is countable, so is a. So I focus mainly on this. 

Let us start by thinking about the so called Skolem Paradox. Take an axiomatization of 

set theory, say first-order classical ZF. This proves that some sets, and a fortiori the 

totality of all sets, are uncountable. Standard model theory assures us that there are 

models of this theory (in which ‗∈‘ really is the membership relation) where the domain of 

the model is countable. There is a function which enumerates the members of the 

domain. It is just one which has failed to get into the domain of the interpretation. Why 

should we not suppose, then, that the universe of sets really is countable? From the 

perspective of the metatheory, ZF+ (ZF + ‗There is a model of ZF‘), the countable model 

is not the intended ―interpretation‖. Our metatheory tells us that the domain of all sets is 

actually uncountable. But ZF+ itself has a countable model, so the situation is exactly 

the same with this. We might suppose that the countable model of this tells us how 

things actually are. True, in the metatheory we are now working in, ZF++ (ZF+ + ‗There 

is a model of ZF+‘), that model will appear not to be the intended model. But we can 

reply in the exactly same way. Clearly, the situation repeats indefinitely. And at no stage 

are we forced to conclude that the universe of sets is really uncountable. We will always 

have a countable model at our disposal.  

Indeed, it is not just the case that there is nothing that will force us to conclude that the 

universe of sets is really uncountable. There are certain conceptions of sethood which 

actually push us to that conclusion. Thus, suppose that one takes the not implausible 

view that sets are simply the extensions of predicates (or some predicates anyway). <1> 

Then, given that the language is countable, so it the universe of sets. Now, imagine that 

the history of set theory had been slightly different. Suppose that set theory had been 

investigated for a few years before Cantor, and that those who investigated it took sets 

to be simply the extensions of predicates. Suppose also that the theory had actually 

been formalised, say by some mathematican, Zedeff.  

______ 
(1) Myhill. J. (1952), ‗The Hypothesis that All Classes are Nameable‘, Proceedings of the Academy of Sciences of the 

United States of Ameroca, 38: 979-81. 
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The (strong) Axiom of Countablity, being an a priori truth about sets, was one of the 

axioms. Things were bubbling along nicely, until Cantor came along and showed that 

within the theory one could prove that some sets are uncountable. The theory was 

inconsistent. In this history, Cantor was playing Russell to Zedeff‘s Frege. We can 

imagine that the community was dismayed by this paradox, and started to try to amend 

the axiomatization in such a way as to avoid paradox. Perhaps, indeed, the hierarchy 

ZF, ZF+, ZF++, ... emerged—rather as the hierarchy of Tarski metalanguages emerged 

in our actual history. 

In actual history, set theory was consistentized in response to Russell‘s paradox and 

related ones. However, as we now know, there is an alternative: maintain the naive 

comprehension schema, allow the paradoxes, and deploy a paraconsistent logic, which 

quarantines the paradoxes. The same was an option in our hypothetical history; 

maintain the Axiom of Countability, the paradoxes it generates, and deploy a 

paraconsistent logic. Now back to reality. Is there such a theory? There is. We can show 

this with an application of a technique of paraconsistent logic called the Collapsing 

Lemma. Take a first-order language (without function symbols) for LP. Let M = .D, d. be 

any interpretation for this. Let ~ be any equivalence relation on D. <2> If d ‗∈’ D, let [d] 

be its equivalence class under ~. We define a new interpretation (the collapsed 

interpretation),  , as follows. 

D~ = {[d] : d ∈ D}. For any constant, c, ƃ~(c) = [ƃ(c)]. For any n-place predicate, P, [.a1, 

..., an.] is in the extension of P in M~ iff there are d1 . a1,..., dn . an, such that .d1, ...,dn. 

is in the extension of P in M. Similarly for the anti-extension of P. The collapse, in effect, 

simply identifies all the members of an equivalence class, producing an object with the 

properties of each of its members. The Collapsing Lemma tells us that any sentence in 

the language of M (i.e., the language augmented with a name for each member of D) 

which is true in M is true in M~; and any sentence false in M is false in M~. <3> 

______ 

(2) Priest, G. (2006), In Contradiction: a Study of the Transconsistent (2nd edition), Oxford: Oxford University Press. 

(3) Weber, Z. (201+), ‗Transfinite Cardinals in Paraconsistent Set Theory‘, Review of Symbolic Logic, forthcoming. 
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To apply this: let the language be the language of first-order ZF (without set abstracts). 

Take a (classical) interpretation of this, M, which is a model of ZF. Let k be any 

countable set in D. (Here, and in what follows, I mean countable—or uncountable—in 

the sense of M.) Consider the equivalence relation on D which identifies all uncountable 

sets with k, and otherwise leaves everything alone. That is, x ~ y iff in M: 

●  x and y are uncountable 

●  or (x is uncountable and y is k) 

●  or (y is uncountable and x is k) 

●  or (x and y are both k) 

●  or (x and y countable sets distinct from k, and x = y). 

Now consider the collapsed model obtained with ~. By the Collapsing Lemma, this is a 

model of ZF. But in M~ every set is countable. For every constant, c, that denotes a 

countable set in M : 

● ∃f(f is a function with domain ω ∧ ∀x ∈ c∃n ∈ ωf(n) = x) 

is true in M, and so by the Collapsing Lemma, in M~. Since every member of D~ has 

such a name in M~, we have the WAC in M~: 

● ∀z∃f(f is a function with domain ω ∧ ∀x ∈ z∃n ∈ ωf(n) = x). 

A slightly different equivalence relation delivers an interpreation which verifies SAC. Let 
k now be the object which is Vω (the sets of rank ω) in M. 

Consider the equivalence relation which identifies all things of rank greater than ω with 
Vω, and leaves everything else alone. That is, x ~ y iff in M: 

● x, y Є Vω and x = y 

● or x, y ∉ Vω. 

Again, this is a model of ZF. K ∪ {k} is countable in M. Let i be the name of the function 
that enumerates it, and le e be the name of any member of k ∪ {k}. Then in M it is true 
that:  
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●  i is a function with domain ω Λ ∃n Є ω i(n) = e. 

Hence this is true in M~. But since every member of D~ is named by some e of this kind, 
we have in M~ : 

●  i is a function with domain ω Λ ∀x ∃n Є ωi(n) = x. 

Hence we have the SAC in M~: 

● ∃ f (f is a function with domain ω Λ ∀x ∃n Є ω f(n) = x. 

For good measure, M¡- is also a model of the naive comprehension schema, ∃z ∀x(x Є z  
≡ A), too. (See Priest (2006), 18.4.) If sets just are the extensions of predicates, one 
would expect this schema to hold. I note also that both of the models we have 
constructed are non-trivial. Thus, if c and d refer to two distinct objects in D that are not 
involved in the collapse, c = d is not true in the collapsed model. 

What we see, then, is that there are (non-trivial) theories that contain the (strong or 
weak) Axiom of Countability, plus ZF (plus, in one case, the naive comprehension 
schema). If T is the set of things true in either of the collapsed models we have 
constructed, T is one such theory. Within such a theory, every set us uncountable; but, 
because of Cantor¡¯ s Theorem, some sets are uncountable as well. It is Cantor‘s 
Theorem that generates the hierarchy of different sizes of infinity. And in this context, it 
is recognizably paradoxical. The whole hierarchy of infinities is therefore a consequence 
of the paradox. The transfinite, then, is generated by the transconsistent. <4> 

In a nuthsell: the Axiom of Countability makes perfectly good paraconsistent sense, 
even within the context of ZF. And it provides a radically new possible perspective on 
the universe of sets. 

_______ 

(4) It was Zach Weber who first suggested to me that one might see the tranfinite in this way. See his (201+), section 

8. 

 

 

 

 


